Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.

Dans un repère ortonormé (O,I,J), on considère les points A(-5 ; 3), B(11 ; 1), C(10 ; 6) et D(2 ; -6).
Démontrer que ces quatre points appartiennent a un meme cercle dont un diamètre a pour extrémités deux de ces points

Aidez moi je n'en peut plus...

Sagot :

Dans un repère orthonormé (O,I,J), on considère les points
A(-5;3)   B(11;1)   C(10;6) et D (2;-6)
posons E(3;2)
alors EA²=8²+1²=65
EB²=8²+1²=65
EC²=7²+4²=65
ED²=1²+8²=65
donc EA=EB=EC=ED=rac(65)
donc A,B,C,D sont cocycliques
le centre du cercle est E et son rayon est r=rac(65)
de plus E est le milieu de [AB]
donc [AB] est un diamètre de ce cercle

Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.