Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.

Dans un repère ortonormé (O,I,J), on considère les points A(-5 ; 3), B(11 ; 1), C(10 ; 6) et D(2 ; -6).
Démontrer que ces quatre points appartiennent a un meme cercle dont un diamètre a pour extrémités deux de ces points

Aidez moi je n'en peut plus...



Sagot :

Dans un repère orthonormé (O,I,J), on considère les points
A(-5;3)   B(11;1)   C(10;6) et D (2;-6)
posons E(3;2)
alors EA²=8²+1²=65
EB²=8²+1²=65
EC²=7²+4²=65
ED²=1²+8²=65
donc EA=EB=EC=ED=rac(65)
donc A,B,C,D sont cocycliques
le centre du cercle est E et son rayon est r=rac(65)
de plus E est le milieu de [AB]
donc [AB] est un diamètre de ce cercle

Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.