Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.
Sagot :
(n+1)^2 -n^2
= (n+1)² -n²
= n² + 2n + 1 - n²
= 2n + 1
La somme de deux nombres entiers consécutifs est-elle toujours égale à la différence de leurs carrés :
qui revient à poser :
(n+1) + n = (n+1)² -n² ?
qui revient à montrer que : (n+1) + n - [n+1)² -n²] = 0 ?
on a vu que (n+1)² - n² = 2n + 1
(n+1) + n - [2n + 1]
et on calcul :
n + 1 + n - 2n - 1
= 2n - 2n + 1 - 1
= 0
donc oui la somme de deux nombres entiers consécutifs est toujours égale à la différence de leurs carrés.
En espérant t'avoir aidé.
Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.