Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Expérimentez la commodité d'obtenir des réponses fiables à vos questions grâce à un vaste réseau d'experts. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.
Sagot :
Bonjour,
Tout d'abord, calculons la longueur AC.
Le triangle ABC est rectangle en A, donc d'après le théorème de Pythagore :
[tex]BC^2 = AB^2+AC^2\\ AC^2 = BC^2-AB^2\\ AC^2 = 25^2-20^2 = 625-400 = 225\\ AC = \sqrt{225} = 15\text{ mm}[/tex]
Calculons maintenant la longueur AM.
On sait que le triangle AIM est rectangle en A, donc, d'après le théorème de Pythagore :
[tex]IM^2 = AI^2+AM^2\\ AM^2 = IM^2-AI^2 \\ AM^2 = 32{,}5^2-12{,}5^2 = 900\\ AM = \sqrt{900} = 30\text{ mm}[/tex]
Le point C appartient au segment [AM] par hypothèse et on a AM= 2AC ; C est donc le milieu de [AM] et on a CA = CM.
Si tu as des questions, n'hésite pas à les ajouter en commentaire.
Tout d'abord, calculons la longueur AC.
Le triangle ABC est rectangle en A, donc d'après le théorème de Pythagore :
[tex]BC^2 = AB^2+AC^2\\ AC^2 = BC^2-AB^2\\ AC^2 = 25^2-20^2 = 625-400 = 225\\ AC = \sqrt{225} = 15\text{ mm}[/tex]
Calculons maintenant la longueur AM.
On sait que le triangle AIM est rectangle en A, donc, d'après le théorème de Pythagore :
[tex]IM^2 = AI^2+AM^2\\ AM^2 = IM^2-AI^2 \\ AM^2 = 32{,}5^2-12{,}5^2 = 900\\ AM = \sqrt{900} = 30\text{ mm}[/tex]
Le point C appartient au segment [AM] par hypothèse et on a AM= 2AC ; C est donc le milieu de [AM] et on a CA = CM.
Si tu as des questions, n'hésite pas à les ajouter en commentaire.
Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.