Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Découvrez des réponses complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

soit c la courbe de la fonction exponentielle dans un repére orthonormé.
soit M un point de la courbe. M a pour cordonnées M( x;e^x)
existe- il une valeur de x pour laquelle la distance OM est minimale? justifier


Sagot :

soit C la courbe de la fonction exponentielle dans un repère orthonormé.
soit M un point de la courbe. M a pour cordonnées M( x;e^x)
existe- il une valeur de x pour laquelle la distance OM est minimale? justifier


réponse :
OM²=x²+(e^x)²
donc OM=f(x)=√(x²+e^(2x))

f'(x)=(2x+2e^(2x))/(2√(x²+e^(2x))
      =(x+e^(2x))/√(x²+e^(2x))

f'(x)=0 donne x+e^(2x)=0
donc x=-0,4263028
f admet un minimum en x=-0,4263028

donc pour x=-0,4263028 la distance OM est minimale
 






Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.