Sagot :
Par exemple M12 est ce qui reste à rembourser après le 12
ième remboursement, au bout d'un an quoi. Le 13 ième remboursement est
de 30 € qui vont se soustraire non pas à M12 mais à 1,01M12, car la banque nous compte des intérêts sur M12.
La banque compte 1% d'intérêts sur M12, soit 0,01M12 ( 1%=0,01) qui s'ajoute à M12 soit :
M12+0,01M12=M12(1+0,01)=1,01M12
Ce qui fait qu'après le 13 ième remboursement il reste à rembourser :
M13=1,01M12-30
Si on fait le même raisonnement pour le n+1 ième remboursement on obtient :
Mn+1=1,01Mn-30b)
Il faut calculer
tu réduis le numérateur et tu mets 1,01 en facteur.....et normalement il y a une simplification importante.
Tu dois trouver 1,01, tu en déduis donc que la suite (Vn) est géométrique de raison 1,01 et je te laisse trouver le premier terme.
c)
Pour exprimer Vn en fonction de n, il faut utiliser la formule qui donne le terme général d'une suite géométrique, tu dois avoir ça dans ton cours. Sinon cherche sur le net : "terme général d'une suite géométrique."
Pour exprimer Un en fonction de n il faut d'abord remarquer que Un=Vn+3000....et maintenant c'est facile.
d)
Tu as compris que la suite (Un) est la même que la suite (Mn) et normallement on trouve donc :
et lorsque l'emprunt est remboursé.
L'algorithme peut ressembler à ça :
M=1000
n=0
Tant que M>0
M prend la valeur 3000-20001,01n
n prend la valeur n+1
Fin Tant que
afficher n
La banque compte 1% d'intérêts sur M12, soit 0,01M12 ( 1%=0,01) qui s'ajoute à M12 soit :
M12+0,01M12=M12(1+0,01)=1,01M12
Ce qui fait qu'après le 13 ième remboursement il reste à rembourser :
M13=1,01M12-30
Si on fait le même raisonnement pour le n+1 ième remboursement on obtient :
Mn+1=1,01Mn-30b)
Il faut calculer
tu réduis le numérateur et tu mets 1,01 en facteur.....et normalement il y a une simplification importante.
Tu dois trouver 1,01, tu en déduis donc que la suite (Vn) est géométrique de raison 1,01 et je te laisse trouver le premier terme.
c)
Pour exprimer Vn en fonction de n, il faut utiliser la formule qui donne le terme général d'une suite géométrique, tu dois avoir ça dans ton cours. Sinon cherche sur le net : "terme général d'une suite géométrique."
Pour exprimer Un en fonction de n il faut d'abord remarquer que Un=Vn+3000....et maintenant c'est facile.
d)
Tu as compris que la suite (Un) est la même que la suite (Mn) et normallement on trouve donc :
et lorsque l'emprunt est remboursé.
L'algorithme peut ressembler à ça :
M=1000
n=0
Tant que M>0
M prend la valeur 3000-20001,01n
n prend la valeur n+1
Fin Tant que
afficher n
Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.