Sagot :
Exercice 1 : Pour toutes ces propositions, a
et b sont des réels.
- implique a=b ou a=-b
- implique a=0 et b=0
- a=b implique a²=b²
- a=-b implique a²=b²
- (a+b)(a-b)=0 implique a=0 ou b=0
- a=0 ou b=0 implique (a+b)(a-b)=0
Quelles sont les propositions équivalentes dans cette liste et pourquoi ?
- (a-b)(a+b)=0 équivaut à a²=b²
- (a+b)(a-b)=0 équivaut à a=0 ou b=0
car A implique B et B implique A donne A est équivalent à B
Exercice 2 : ABCD est un parallélogramme quelconque. O est le point d'intersection de ses diagonales. Démontrer de deux façons différentes que pour tout point M du plan on a l'égalité suivante : MA + MC = MB + MD
MA+MC=MB+BA+MD+DC
=MB+MD+BA+CD
=MB+MD+vec(0)
=MB+MD
ABCD parallélogramme
donc AD=BC
donc AM+MD=BM+MC
donc MA+MC=MB+MD
- implique a=b ou a=-b
- implique a=0 et b=0
- a=b implique a²=b²
- a=-b implique a²=b²
- (a+b)(a-b)=0 implique a=0 ou b=0
- a=0 ou b=0 implique (a+b)(a-b)=0
Quelles sont les propositions équivalentes dans cette liste et pourquoi ?
- (a-b)(a+b)=0 équivaut à a²=b²
- (a+b)(a-b)=0 équivaut à a=0 ou b=0
car A implique B et B implique A donne A est équivalent à B
Exercice 2 : ABCD est un parallélogramme quelconque. O est le point d'intersection de ses diagonales. Démontrer de deux façons différentes que pour tout point M du plan on a l'égalité suivante : MA + MC = MB + MD
MA+MC=MB+BA+MD+DC
=MB+MD+BA+CD
=MB+MD+vec(0)
=MB+MD
ABCD parallélogramme
donc AD=BC
donc AM+MD=BM+MC
donc MA+MC=MB+MD
Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.