Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Bonsoir, je n'arrive pas à commencer un exercice, Voici l'énoncé:
On a représenté graphiquement dans un repère orthonormé les fonctions f et g définies sur R par:
f(x)=racine de x au carré +1 et g(x)=valeur absolue de x.
la Q1 est; démontrer que pour tout réel x non nul, on peut écrire : f(x) = valeur absolue de x x racine de 1+1/x au carré. Merci!


Sagot :

On a [tex] \sqrt{ x^{2}} = |x| [/tex] pour tout x de IR.
On a aussi [tex] \sqrt{ x^{2}+1} = \sqrt{ x^{2}(1+ \frac{1}{ x^{2} }) } = \sqrt{ x^{2} } \sqrt{(1+ \frac{1}{ x^{2} })} = |x| \sqrt{(1+ \frac{1}{ x^{2} })}[/tex]
Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.