Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Obtenez des réponses détaillées à vos questions de la part d'une communauté dédiée d'experts sur notre plateforme. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

Bonjour j'ai un exercice à rendre demain et je suis vraiment bloquée!
Dans l'énoncé on considère la fonction f définie par f(x)=a racine de x+b , a et b sont>0. On donne f(o)=2, f(3)=4.
1. on demande de calculer les réels a et b, et j'ai trouvé a=2 et b=1
mais ensuite je bloque quand on demande de trouver Df de la fonction f, et de démontrer que f est croissante sur Df, et ensuite de dresser le tableau de variations.
Merci de votre aide!


Sagot :

Dans l'énoncé on considère la fonction f définie par f(x)=a racine de x+b , a et b sont>0. On donne f(o)=2, f(3)=4.
f(x)=a√x+b
f(0)=a√0+b=2 donc b=2
f(3)=a√3+2=4 donc a=2/√3
donc f(x)=2√(x/3)+2

Df = IR+*=]0;+inf[

f'(x)=2(1/3)/(2√(x/3))=1/(3√(x/3))>0
donc f est croissante sur IR+*








Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.