Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

 On dispose d'un carré de métal de 10 cm de côté Pour fabriquer ne boite sans couvercle , on enlève a chaque coin un carré de côté x cm et on relève les bords par pliage La boite obtenue est un pavé droit

1) Calcules le volume de la boite pour x = 2.
2) Quelles sont les valeurs possible pour la variable x ?
3) On note V la fonction qui assosie le volume de la boite exprimé en cm²     demontrer que V(x)=100x-40x²+3=4xcube
4) Retrouver le resultat 1- avec la fonction. Calculer V(3) et la valeur exacte de l'image 5/3par V
5) Déterminer par encadrement succesif pour quelle valeurs de x la boite a un volume maximal quel est ce volume maximal


Sagot :

1)      Pour x = 2 on a le côté de la base du pavé est égal à (10 – 2 x 2 = 6)  et sa hauteur est  2 , donc le volume du pavé est : 6^2 x 2 = 72 cm3. 2)      On a 0 < 2 x < 10 donc  0 < x < 5 . 3)      V(x) = x (2 x – 10)^2 = x(4 x^2 – 40 x + 100) = 4 x^3 – 40 x^2 + 100 x . 4)      V(2) = = 4 2^3 – 40 2^2 + 100 x = 32 – 160 + 200 = 72 cm^3 , et V(3) = 48 cm^3 et V(5/3) = 74,07 cm3 . 5)      V(3=9/3) < V(2=6/3)<V(5/3), donc le volume sera maximal pour x = 5/3 donc  Vmax = 74,07 cm^ 3 .
Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.