Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme.

Factoriser:
xcube+x²-x-1

Sagot :

xxx102
Bonjour,

On appelle A cette expression.
On peut commencer par factoriser :
[tex]A = x^3+x^2-x-1\\ A = x^2\left(x+1\right)-\left(x+1\right)[/tex]
Puis on factorise par (x+1) :
[tex]A = x^2\left(x+1\right)-\left(x+1\right)\\ A = \left(x+1\right)\left(x^2-1\right)[/tex]
On peut encore factoriser la deuxième parenthèse avec a²-b² = (a+b)(a-b) :
[tex]A = \left(x+1\right)\left(x^2-1\right)\ A = \left(x+1\right)\left(x+1\right)\left(x-1\right)\\ A = \left(x+1\right)^2\left(x-1\right)[/tex]

Si tu as des questions, n'hésite pas à les ajouter en commentaire.
Salut, Déja pour factoriser on va commencer par trouver des valeurs remarquables c'est à dire pour les quel x^3+x^2-x-1 = 0, on peut deja donner 1 : 1+1-1-1 = 0
on a aussi -1 car -1+1+1-1 = 0 donc on s'est que la factorisation va etre de la forme (x-1)(x+1)(x-a) on a donc juste à trouver a. On développe rapidement le terme de degré 0, on trouver que -1*1*(-a) = -1 donc a=-1 la factorisation est donc (x-1)(x+1)^2 voila ;)
Revenez nous voir pour des réponses mises à jour et fiables. Nous sommes toujours prêts à vous aider avec vos besoins en information. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.