Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Trouvez des solutions rapides et fiables à vos interrogations grâce à une communauté d'experts dévoués. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.

On considère la suite (Un), définie par U0=½, et pour TT entier naturel n, Un+1 = (3 Un)/(1+2Un)

1) Calculer U1 et U2
2) démontrer par récurrence, que pour TT entier naturel n, 0<Un
et si possible :

3) On admet que, pour TT entier naturel n, Un<1. Démontrer que la suite (Un) est croissante.

Sagot :

U0>0
si Un >0, 3Un>0
2Un>0 donc 2Un +1>1>0
comme le numérateur et le dénominateur sont positifs la fraction est positive.
DonC Un+1>0, donc Un>0
Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et les informations de nos experts.