Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.
Sagot :
(2n-3)(4n-13) peut s'écrire sous forme d'un trinôme du second degré.
Dans R le trinome est du signe de a donc positif pourles valeurs de n
à l'extérieur des racines
donc n< 3/2 ou n > 13/4
Mais attention on travaille dans N donc je suppose que dans la suite de la correction
on retient les valeurs n = 0, n = 1 et n supérieur ou égal à 4
Dans R le trinome est du signe de a donc positif pourles valeurs de n
à l'extérieur des racines
donc n< 3/2 ou n > 13/4
Mais attention on travaille dans N donc je suppose que dans la suite de la correction
on retient les valeurs n = 0, n = 1 et n supérieur ou égal à 4
Ce n'est qu'une erreur de frappe!
On a 15=1x15=3x5=5x3=15x1, donc pour m est égal respectivement à 1,3,5,15 on a (2n-3)(4n-13) est égal respectivement à 15,5,3,1.
En développant (2n-3)(4n-13) on obtient 8n^2 -38n+39, donc en faisant l'égalité 8n^2 -38n+39 = 1 ou 3 ou 5 ou 15 on trouve que le discriminant des équations de second degré obtenues n'est pas un carré sauf pour : 8n^2 -38n+39 = 15 càd 8n^2 -38n+24 = 0 , càd 4n^2 -19n + 12 = 0 et donc delta = 169 = 13 x 13 , donc les solutions sont n=(19-13)/8=3/4 (pas à considèré) et n= (19+13)/8=4 .
La solution du problème est n= 4 et m=1
On a 15=1x15=3x5=5x3=15x1, donc pour m est égal respectivement à 1,3,5,15 on a (2n-3)(4n-13) est égal respectivement à 15,5,3,1.
En développant (2n-3)(4n-13) on obtient 8n^2 -38n+39, donc en faisant l'égalité 8n^2 -38n+39 = 1 ou 3 ou 5 ou 15 on trouve que le discriminant des équations de second degré obtenues n'est pas un carré sauf pour : 8n^2 -38n+39 = 15 càd 8n^2 -38n+24 = 0 , càd 4n^2 -19n + 12 = 0 et donc delta = 169 = 13 x 13 , donc les solutions sont n=(19-13)/8=3/4 (pas à considèré) et n= (19+13)/8=4 .
La solution du problème est n= 4 et m=1
Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.