Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Rejoignez notre plateforme de questions-réponses et connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise.
Sagot :
Question 1: Le calcul est évident
Question 2: L'écriture obtenue au 1 ne traduit pas la div. euclidienne de (4n - 3)² par 8
car 9 > 8.
On a
(4n - 3)² = 8 (2n² - 3n + 1 ) + 1
Le trinôme entre parenthèse peut s'écrire: (2n - 1)(n-1).
Pour tout n supérieur ou égal à 2 ce produit est supérieur ou égal à 0.
Donc 2n² - 3n + 1 est le quotient de la division euclidienne de (4n - 3)² par 8 avec un reste égal à 1.
Question 3:
(4n - 3)² = 8(2n²-3n) + 9
le reste dans la division euclidienne doit être inférieur au diviseur
donc 9 < 2n²-3
ce qu'on peut écrire: 2n² - 3n - 9 > 0
Le trinôme peut se factoriser en (2n+3)(n-3)
on a donc pour tout n > 3 : 2n² - 3n - 9 >0
Pour tout n supérieur ou égal à 4 : (4n - 3)² peut s'écrire sous la forme 8(2n² - 3n) +9 qui est l'expression de la division euclidienne de (4n - 3)² par ( 2n² - 3n)
Question 2: L'écriture obtenue au 1 ne traduit pas la div. euclidienne de (4n - 3)² par 8
car 9 > 8.
On a
(4n - 3)² = 8 (2n² - 3n + 1 ) + 1
Le trinôme entre parenthèse peut s'écrire: (2n - 1)(n-1).
Pour tout n supérieur ou égal à 2 ce produit est supérieur ou égal à 0.
Donc 2n² - 3n + 1 est le quotient de la division euclidienne de (4n - 3)² par 8 avec un reste égal à 1.
Question 3:
(4n - 3)² = 8(2n²-3n) + 9
le reste dans la division euclidienne doit être inférieur au diviseur
donc 9 < 2n²-3
ce qu'on peut écrire: 2n² - 3n - 9 > 0
Le trinôme peut se factoriser en (2n+3)(n-3)
on a donc pour tout n > 3 : 2n² - 3n - 9 >0
Pour tout n supérieur ou égal à 4 : (4n - 3)² peut s'écrire sous la forme 8(2n² - 3n) +9 qui est l'expression de la division euclidienne de (4n - 3)² par ( 2n² - 3n)
Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.