Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dédiée d'experts sur notre plateforme de questions-réponses.
La suite Un est définie par U1=5 et, pour tout entier n, U(n+1)=(1/2)(Un+(2/Un))
1)Démontrer que pour tout n > ou égal 1, Un>0
2)Démontrer que pour tout n > ou égal 1, U(n+1)- racine2=(1/2)*((Un-racine2)^2/(Un))
En déduire que pour tout n > ou égal 1, Un> ou égal racine2
3)Démontrer que pour tout n > ou égal 1, U(n+1)- racine2= (1/2)(Un-racine2)+(1/Un)-(1/racine 2)
4)En déduire, que pour tout n > ou égal 1, U(n+1)- racine2<(5/2^(n+1))(faire une demonstation par recurrence)
4) la suite (un) admet elle une limite? justifier si oui laquelle?
La suite Un est définie par U1=5 et, pour tout entier n, U(n+1)=(1/2)(Un+(2/Un))
1)Démontrer que pour tout n > ou égal 1, Un>0
2)Démontrer que pour tout n > ou égal 1, U(n+1)- racine2=(1/2)*((Un-racine2)^2/(Un))
En déduire que pour tout n > ou égal 1, Un> ou égal racine2
3)Démontrer que pour tout n > ou égal 1, U(n+1)- racine2= (1/2)(Un-racine2)+(1/Un)-(1/racine 2)
4)En déduire, que pour tout n > ou égal 1, U(n+1)- racine2<(5/2^(n+1))(faire une demonstation par recurrence)
4) la suite (un) admet elle une limite? justifier si oui laquelle?