Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dédiée d'experts sur notre plateforme de questions-réponses.



La suite Un est définie par U1=5 et, pour tout entier n, U(n+1)=(1/2)(Un+(2/Un))

1)Démontrer que pour tout n > ou égal 1, Un>0
2)Démontrer que pour tout n > ou égal 1, U(n+1)- racine2=(1/2)*((Un-racine2)^2/(Un))
En déduire que pour tout n > ou égal 1, Un> ou égal racine2
3)Démontrer que pour tout n > ou égal 1, U(n+1)- racine2= (1/2)(Un-racine2)+(1/Un)-(1/racine 2)
4)En déduire, que pour tout n > ou égal 1, U(n+1)- racine2<(5/2^(n+1))(faire une demonstation par recurrence)
4) la suite (un) admet elle une limite? justifier si oui laquelle?



Sagot :

Tu fais par récurrence :

Initialisation
Un>=0
U1>=0
5>=0
Donc la propriété est vraie au rang 1

Hérédité :
Si Un est vrai montrons que un+1 est vraie :
Un>=0
2/un>= 2
Un+2/un >= un+2
(1/2)un+2/un>=1/2xun+2
Un+1>=1/2un+1

Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.