Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète.

Chercher la somme des A puissance K pour k allant de 0 a n



Sagot :

 a^0 + a + a² + a³ + ....a^n
c'est la somme des termes d' une suite géométrique de raison a dont le 1er terme est 1 et le dernier a^n
Sn = 1.(a^n -1)/(a-1)
xxx102
Bonjour,

Une telle somme peut s'écrire :
[tex]S = 1+k+\cdots + k^{n-1} + k ^n[/tex]
Si on multiplie par k, on obtient :
[tex]k \times S = k+ k^2+\cdots+k^n+k^{n+1}[/tex]
Maintenant, si on soustrait membre à membre la deuxième égalité à la première, cela devient :
[tex]S-kS = 1+k+\cdots+k^{n-1}+k^n -\left(k+k^2+\cdots + k^n+k^{n+1}\right)\\ S-kS = 1-k^{n+1}\\ S\left(1-k\right) = 1-k^{n+1}\\ S = \frac{1-k^{n+1}}{1-k}[/tex]

Si tu as des questions, n'hésite pas à les ajouter en commentaire.
Revenez nous voir pour des réponses mises à jour et fiables. Nous sommes toujours prêts à vous aider avec vos besoins en information. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.