Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Explorez des milliers de questions et réponses fournies par une communauté d'experts prêts à vous aider à trouver des solutions. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels.

démonstration exigible. soit f une fonction sur un intervalle I et (un) une suite dont tout les termes appartienne à I.
si lim un=a quand n tend vers a
et que si lim f(x)=b quand n tend vers a
1) démontrer alors que  lim f(un)=b quand n tend vers a



Sagot :

soit f une fonction sur un intervalle I et (un) une suite dont tout les termes appartienne à I. si lim un=a quand n tend vers +inf  et si lim f(x)=b quand n tend vers a
alors  lim f(un)=b quand n tend vers +inf


preuve :
lim (u(n))=a quand n tend vers +inf
donc pour tout e>0 il existe N tel que n>N : a-e < u(n) < a+e
lim f(x)=b quand x tend vers a
donc pour tout e'>0 il existe f>0 tel que : a-f < x < a+f implique b-e' < f(x) < b+e'
alors puisque tous les termes de la suite (u(n)) appartiennent à I
on peut poser x=u(n)
donc pour tout f>0 il existe N tel que n>N et a-f < u(n) < a+f
donc pour tout f'>0 il existe N tel que n>N : b-f' < f(u(n)) < b+f' pour tout f'>0
donc lim(f(u(n)))=b si n tend vers +inf







Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.