Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Rejoignez notre plateforme de questions-réponses pour obtenir des informations précises d'experts dans divers domaines. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.
Sagot :
Chaque porte reçoit autant de tours de clef que le nombre de diviseurs de son numéro.
Tout nombre peut s'exprimer comme p1e1 * p2e2 * p3e3 * ... ou les p sont des nombres premiers.
Un diviseur de ce nombre s'écrira p1f1 * p2f2 * p3f3 * ...
L'exposant f1 peut être choisi parmi les nombres de 0 à e1 (car n0 = 1), soit (e1+1) exposants possibles.
L'exposant f2 peut être choisi parmi les nombres de 0 à e2, soit (e2+1 exposants possibles).
Remarque : si tous les f choisis sont 0, le diviseur sera 1.
En tout : (e1+1) * (e2+1) * (e3+1) * ... diviseurs.
Supposons que le numéro soit un carré : tous les e sont pairs; tous les (e+1) sont impairs; le produit des (e+1) sera impair et il y a un nombre impair de diviseurs; à la fin, la porte sera ouverte.
Supposons que le numéro soit un carré : il y a au moins un e impair, au moins un (e+1) pair; le produit des (e+1) sera pair et il y a un nombre pair de diviseurs; à la fin, la porte sera fermée.
Avec 500, les portes ouvertes sont 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441 ET 484.
Tout nombre peut s'exprimer comme p1e1 * p2e2 * p3e3 * ... ou les p sont des nombres premiers.
Un diviseur de ce nombre s'écrira p1f1 * p2f2 * p3f3 * ...
L'exposant f1 peut être choisi parmi les nombres de 0 à e1 (car n0 = 1), soit (e1+1) exposants possibles.
L'exposant f2 peut être choisi parmi les nombres de 0 à e2, soit (e2+1 exposants possibles).
Remarque : si tous les f choisis sont 0, le diviseur sera 1.
En tout : (e1+1) * (e2+1) * (e3+1) * ... diviseurs.
Supposons que le numéro soit un carré : tous les e sont pairs; tous les (e+1) sont impairs; le produit des (e+1) sera impair et il y a un nombre impair de diviseurs; à la fin, la porte sera ouverte.
Supposons que le numéro soit un carré : il y a au moins un e impair, au moins un (e+1) pair; le produit des (e+1) sera pair et il y a un nombre pair de diviseurs; à la fin, la porte sera fermée.
Avec 500, les portes ouvertes sont 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441 ET 484.
Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.