Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Rejoignez notre plateforme de questions-réponses pour obtenir des informations précises d'experts dans divers domaines. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.

Bonjour à tous ! je suis coincée sur le calcul de la limite de cette fonction à la fois en +l'infini et en -l'infini.
f(x)=3-cos(x)/x-3 , sachant que cos(x) est compris entre -1 et 1 donc la limite vaut 0 si je ne me trompe pas.
Moi j'ai trouvé pour limite 0 dans les 2 cas car 3/+l'infini et 3/-l'infini = 0

Par la suite j'ai deux autres questions impliquant deux autres fonctions: g(x)=2/x-3 et h(x)=4/x-3?
Il faut démontrer que pour tt x de ] 3;+infini[ , g(x) et que pour tt x de ]-infini; 3 [ , h(x)
Maintenant ils me disent d'en déduire les limites de la fonction f en +infini et -infini alors qu'on les a calculer juste avant. Merci d'avance à celle ou celui qui prendra le temps de lire mon exercice.

Sagot :

f(x)=3-cos(x)/(x-3)
-1 < cos(x) < 1

-1/(x-3) < cos(x) < 1/(x-3) si x>3
3-1/(x-3) < f(x) < 3+1/(x-3)
donc lim(f(x)=+inf)=3

de même si <3 on a -1/(3-x) < cos(x) < 1/(3-x)
donc 3-1/(3-x) <  f(x) <  3+1/(3-x)
donc lim(f(x),-inf)=3





Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.