Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dévouée d'experts sur notre plateforme de questions-réponses. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.

Bonjour à tous,  C'EST URGENT UN DM POUR DEMAIN
Je travail sur un exercice de


niveau Terminal sur les suites (en générale) et sur le principe de


raisonnent par récurrence, mais n'ayant pas eu de cours sur les suites


l'année derniere je bloque un peu dans cette partie du programme.


Voila mon exercice : On considère la suite (Un) définie sur N par :
Uo = 0 et Un+1 = 2/5Un +3
Démontrer que, pour tout entier naturel n : 
Un = 
5 (1-(2/5)^n)

Sagot :

Ok, je te laisse vérifier pour u0.
On suppose que Un= 5 (1-(2/5)^n)
et on veut montrer qu'alors Un+1= 5 (1-(2/5)^n+1)
D'après la définition de cette suite Un+1 = 2/5Un +3
On remplace Un, et ça donne:
Un+1= 2/5*(
5 (1-(2/5)^n) +3
= 5(2/5 - (2/5)^n+1) +3
= 2- 5* (2/5)^n+1) +3
=5-5* (2/5)^n+1
= 5 (1-(2/5)^n+1)
C'est ce qu'on voulait démontrer. Donc l'hérédité est prouvé, donc la propriété est vrai( si tu l'as vérifiée pour u0 et u1