Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses.
Sagot :
1 Aire du rectangle = longueur*largeur
Aire(abcd)=AB*BC
AB=72mm=7,2cm
BC=30mm=3cm
Aire (abcd)=7,2*3= 21,6 cm²
Aire (pyramide)=1/3*volume de la base*hauteur
Aire (pyramide)=1/3*AB*BC*SD
SD=75mm=7,5cm
Aire (pyramide)=1/3*7,2*3*7,5=7,2*7,5= 54 cm3
2. Calculer SA. Arrondir cette longueur au mm.
Le triangle ADS est un triangle rectangle en D.
donc on utlise le théorème de Pythagore :
SA²=AD²+SD²
AD=BC=3 cm (puisque ABCD est un rectangle)
SA²=3²+7,5²=9+56,25=65,25
SA=V65,25 = 8,1 cm arrondi au mm près.
3. SH=50mm = 5cm
a. Les points S,H,D sont alignés dans cet ordre.
Les points S,E,A sont alignés dans cet ordre.
Les segments [EH] et [AD] sont parallèles.
Donc d'près le théorème de Thalès.
SH/SD = SE/SA = EH/AD
Donc 5/7,5=EH/3
EH=3*5/7,5= 2 cm
b. Le coefficient de réduction k est le nombre par lequel tu multiplies les dimensions de la grande pyramide pour obtenir les dimension de la petite.
donc k=SH/SD=5/7,5=50/75= 10/15
Le coefficient de réduction est k=10/15
c. k est le coefficient de réduction.
Donc l'aire sera réduite de k²
Aire(EFGH)=k²*Aire(ABDC)=(10/15)²*21,6 = 9,6 cm²
Le volume de la pyramide sera réduite de k^3
Volume(SEFGH)=k^3*Volume(SABCD)=(10/15)^3*54 = 16 cm3
Aire(abcd)=AB*BC
AB=72mm=7,2cm
BC=30mm=3cm
Aire (abcd)=7,2*3= 21,6 cm²
Aire (pyramide)=1/3*volume de la base*hauteur
Aire (pyramide)=1/3*AB*BC*SD
SD=75mm=7,5cm
Aire (pyramide)=1/3*7,2*3*7,5=7,2*7,5= 54 cm3
2. Calculer SA. Arrondir cette longueur au mm.
Le triangle ADS est un triangle rectangle en D.
donc on utlise le théorème de Pythagore :
SA²=AD²+SD²
AD=BC=3 cm (puisque ABCD est un rectangle)
SA²=3²+7,5²=9+56,25=65,25
SA=V65,25 = 8,1 cm arrondi au mm près.
3. SH=50mm = 5cm
a. Les points S,H,D sont alignés dans cet ordre.
Les points S,E,A sont alignés dans cet ordre.
Les segments [EH] et [AD] sont parallèles.
Donc d'près le théorème de Thalès.
SH/SD = SE/SA = EH/AD
Donc 5/7,5=EH/3
EH=3*5/7,5= 2 cm
b. Le coefficient de réduction k est le nombre par lequel tu multiplies les dimensions de la grande pyramide pour obtenir les dimension de la petite.
donc k=SH/SD=5/7,5=50/75= 10/15
Le coefficient de réduction est k=10/15
c. k est le coefficient de réduction.
Donc l'aire sera réduite de k²
Aire(EFGH)=k²*Aire(ABDC)=(10/15)²*21,6 = 9,6 cm²
Le volume de la pyramide sera réduite de k^3
Volume(SEFGH)=k^3*Volume(SABCD)=(10/15)^3*54 = 16 cm3
Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Laurentvidal.fr est là pour vos questions. N'oubliez pas de revenir pour obtenir de nouvelles réponses.