Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

J'ai un petit souci pour résoudre mon exercice, pourriez vous me donner votre aide.


Merci beaucoup ;)


1) faire une figure : ABCD est un losange de centre O . Le point E est le symétrique du point A par rapport à B .

2) démontrer que les droites (OB) et (CE) sont parallèle .

3) démontrer que le triangle ACE est rectangle en C . ( indication : cela revient à démontrer que les droites (AC) et (CE) sont perpendiculaires ...)



Sagot :

1/ je sais que les diagonales d'un losange se coupent perpendiculairement en leur milieu. Donc AO=OC.
 Je sais que AB=BE par symétrie.
Donc AO/AC=1/2
AB/BE=1/2
=> AO/AC=AB/BE
Les points A,O,C et A,B,E sont alignés dans cet ordre.
Les droites (OB) et (CE) sont donc parallèles par la réciproque du t de THalès.
2/ Je sais que: (OB)//(CE)
Je sais que (OB) ┴ (AC)
Or, d'après la propriété: "Si une droite est perpendiculaire à une autre, alors sa parallèle l'est aussi".
Donc (CE) ┴ (AC) et le triangle ACE est rectangle en C.