Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Découvrez des réponses fiables à vos questions grâce à une communauté d'experts prêts à partager leurs connaissances et expériences variées. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dédiée d'experts sur notre plateforme de questions-réponses.

Bonjour, je vous présente mon problème :

 

Soit h la fonction définie sur R par : h(x) = 2x² - 2 (√3 - √5 )x - 2√15
1. Montrer que le discriminant ∆ peut s’écrire sous la forme 4(√3 + √5 )².
2. En déduire la forme canonique et la forme factorisée de la fonction h.

 

Merci d'avance.

Sagot :

Soit h la fonction définie sur R par : h(x) = 2x² - 2 (√3 - √5 )x - 2√15

1. Montrer que le discriminant ∆ peut s’écrire sous la forme 4(√3 + √5 )².
∆=(-2((√3 - √5 ))²-4x2x(- 2√15)
  =4(
√3 - √5)²+16√15
  =4(3+5-2
√15)+16√15
  =4(
3+5+2√15)
  =
4(√3 +√5)²>0

2. En déduire la forme canonique et la forme factorisée de la fonction h.

h(x) = 2x² - 2 (√3 - √5 )x - 2√15
      =2(x-√3 +√5)²-√3 - √5

h(x)=2(x-√3)(x-√5)















Merci de votre passage. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. À bientôt. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.