Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts.

SVP, Super urgent ! 
Soit m réel et f la fonction trinome du second degré définie sur R par:
 f(x)=mx au carré +4x+2(m-1)
a. Existe-t-il une valeur de m por laquelle 1 soit une racine de f(x)=0 ?
b. Quel est l'ensemble des réels m pour lesquels l'équation f(x) à deux solutions réelles distinctes 
Jsuis perdu. Merci 


Sagot :

Soit m réel et f la fonction trinôme du second degré définie sur R par:
 f(x)=mx²+4x+2(m-1)

a. Existe-t-il une valeur de m pour laquelle 1 soit une racine de f(x)=0 ?
mx²+4x+2(m-1)=0
si x=1 alors m+4+2m-2=0
donc 3m=-2
donc m=-2/3

b. Quel est l'ensemble des réels m pour lesquels l'équation f(x) à deux solutions réelles distinctes

mx²+4x+2(m-1)=0
delta=4²-4*m*2(m-1)
       =16-4m(2m-2)
       =16-8m²+8m
       =8(-m²+m+2)
       =8(2-m)(m+1)
delta>0
ainsi 1<m<2


Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.