Answered

Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Découvrez des réponses complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

Comment passer de (n+2) à n(2n+2)(2n+1) ?
Merci pour votre aide!


Sagot :

il s'agit de la démonstration par récurrence de la propriété
1²+2²+3²+...+n²=n(n+1)(2n+1)/6

pour effectuer l'Hérédité, il faut montrer (Pn) implique (Pn+1)
ainsi 1²+2²+3²+...+n²=n(n+1)(2n+1)/6
donc 1²+2²+3²+...+n²+(n+1)²=n(n+1)(2n+1)/6+(n+1)²
                                         =(n+1)(n(2n+1)/6+(n+1))
                                         =(n+1)(2n²+n+6n+6)/6)
                                         =(n+1)(2n²+7n+6)/6
                                         =(n+1)(2n+2)(2n+3)/6
donc par récurrence, (Pn) reste toujours vraie ......
Merci de votre passage. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. À bientôt. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.