Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Connectez-vous avec des professionnels sur notre plateforme pour recevoir des réponses précises à vos questions de manière rapide et efficace. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.

Montrer que la différence de l'inverse d'un nombre entier non nul et de l'inverse de celui qui le succède est égale à l'inverse du produit de ces nombres.

Sagot :

mdjeux
Bonjour
Soit x un nombre entier et x + 1 celui qui vient juste après on écrit la différence entre les deux inverses, celui de x et celui de x + 1 c'est à dire 1/x - 1/(x + 1) puis on réduit au même dénominateur qui sera x(x + 1)
Le premier terme de la différence devient (x + 1)/x(x + 1) et le deuxième x/x(x+ 1)
puis on écrit la différence mais avec un seul dénominateur
on obtient (x + 1  - x)/x(x + 1) = 1/x(x + 1) ce qui est bien l'inverse du produit de ces deux nombres

Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.