Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés dans divers domaines sur notre plateforme. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines.

En travaillant sur des triangles équilatéraux, Romane conjecture que " la somme des distances entre un point R est à l'intérieur d'un triangle équilatéral et les trois sommets est égal à une constante" Pouvez-vous confirmer ou infirer cette conjecture ?

 

En travaillant sur des triangles équilatéraux, Ernest affirme que,  l'aide de calculs d'aires : On peut démontrer que "la somme des distances entre un point M à l'intérieur d'un triangle équilatéral et les trois côtés est égale à une constante" A-t-il raison ?

Sagot :

soit ABC un triangle équilatéral de côté a
soit M un point quelconque intérieur à BAC
alors on a :
somme des distances de M aux côtés de ABC = x+y+z=d
aire(ABM)=ax/2
aire(ACM)=ay/2
aire(CBM)=az/2
aire(ABC)=ax/2+ay/2+az/2
              =a/2(x+y+z)
              =a/2*d
or aire (ABC)=rac(3)/4*a²
donc d*a/2=rac(3)/4*a²
donc d=rac(3)/2*a
donc d est constant




Merci de nous avoir fait confiance pour vos questions. Nous sommes ici pour vous aider à trouver des réponses précises rapidement. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.