Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines.

f est la fonction définie sur R par : f(x)= ax^3+bx^2+cx+d avec a, b, c, d quartes nombres réels fixes.
C est la courbe représentative de la fonction f dans un repère du plan.
C passe par les points A(0;1) et B(1;2)
La tangente a C en B est horizontale et la tangente a C en A a pour coefficient directeur -1/3.
Déterminer les réels a, b, c et d.


Sagot :

mdjeux
Bonjour
la courbe passe par A(0,1) ce qui veut dire que f(0) = 1
f(0) = a* 0 + b*0 + c*0 +d = d =1  donc d=1
elle passe aussi par B(1;2)  , f(1) = 2
f(1) = a* 1^3 + b* 1² + c*1 +d
mais comme on sait que  d = 1 , f(1) devient
f(1) = a + b + c + 1 = 2       
la tangente à la courbe au point B est horizontale, ce qui veut dire que la dérivée de cette fonction vaut zéro quand x =1 qui est le point d'abscisse de B, donc
f ' (1) = 0
calculons la dérivée de f
f ' (x) = 3ax² + 2bx + c et comme on sait maintenant que  f '(1) = 0 on écrit
f ' (1) = 3 a + 2 b + c = 0
La tangente à la courbe  en A à pour coefficient directeur - 1/3 ce qui veut dire d'après la définition du nombre dérivé que au point d'abscisse x=0 la dérivée de la fonction vaut -1/3
on écrit f '(0) = -1/3
f ' (0) = 3a*0 +2b*0 + c = -1/3
soit c = -1/3 on se retrouve alors avec 2 inconnues encore qui sont a et b mais on dispose de deux équations que l'on a trouvée, qui sont :
a + b + c = 1 et 3a + 2b + c = 0, maintenant qu'on connait la valeur de c on écrit
a + b - 1/3 = 1  et 3a + 2b -1/3 = 0 d'où l'on tire un système de deux équations à 2 inconnues
a + b = 4/3
3a + 2b = 1/3    on le résout et on trouve a = -7/3 et b =11/3, on a vu que d=1 et c=-1/3
L'équation de la droite est :
f(x) = -7/3 x^3 + 11/3 x² -1/3 x +1
Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.