Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

On considère la suite (Un) définie sur |N par Uo=1 et, pour tout n supérieur ou égal à 0, Un+1=Un+2n+3. 
1. Démontrer que, pour tout n de |N, Un strictement supérieur à n². 
2. Conjecturer une expression de Un en fonction de n puis démontrer cette conjecture. 


Sagot :

Pn: Un>n²

Initialisation:
On a Uo=1
et 0²=0
Uo>0² donc Po est vraie.

Hérédité:
Supposons (Pn) vraie pour un certain entier naturel n.
Hyphotèse de récurrence: Un>n²
On doit démontrer que Un+1>(n+1)²

de Un>n² on déduit
    Un+2n>n²+2n
    Un+2n+3>n²+2n+3
    Un+1>n²
Pn+1 est donc vraie
Po est vraie et Pn est héréditaire,  Pn est donc vraie pour tout entier naturel n.
Voila pour la question 1)


Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.