Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses.
Sagot :
Bonsoir,
On peut transformer le membre de gauche de la façon suivante :
[tex]x^2-6x+9-6 = 0[/tex]
On reconnaît l'identité remarquable (a-b)² = a²-2ab+b² :
[tex]x^2-2\times 3 \times x + 3^2 -6 = 0\\ \left(x-3\right)^2 -6 = 0 [/tex]
6 est le carré de sa racine carrée (définiton de la racine carrée) ; on écrit donc :
[tex]x^2-2\times 3 \times x + 3^2 -\left(\sqrt 6\right)^2 = 0[/tex]
Puis on factorise en utilisant a²-b² = (a+b)(a-b) :
[tex]\left[\left(x-3\right)-\sqrt 6\right]\left[\left(x-3\right)+\sqrt 6\right] = 0\\ \left(x-3-\sqrt 6\right)\left(x-3+\sqrt 6\right) = 0[/tex]
Si un produit est nul, alors l'un au moins de ses facteurs est nul.
Donc :
[tex]x-3-\sqrt 6= 0\\ x = 3+\sqrt 6[/tex]
OU
[tex]x-3+\sqrt 6 = 0\\ x = 3-\sqrt 6[/tex]
[tex]S = \left\{3+\sqrt 6 ; 3-\sqrt 6\right\}[/tex]
Si tu as des questions, n'hésite pas à les ajouter en commentaire.
On peut transformer le membre de gauche de la façon suivante :
[tex]x^2-6x+9-6 = 0[/tex]
On reconnaît l'identité remarquable (a-b)² = a²-2ab+b² :
[tex]x^2-2\times 3 \times x + 3^2 -6 = 0\\ \left(x-3\right)^2 -6 = 0 [/tex]
6 est le carré de sa racine carrée (définiton de la racine carrée) ; on écrit donc :
[tex]x^2-2\times 3 \times x + 3^2 -\left(\sqrt 6\right)^2 = 0[/tex]
Puis on factorise en utilisant a²-b² = (a+b)(a-b) :
[tex]\left[\left(x-3\right)-\sqrt 6\right]\left[\left(x-3\right)+\sqrt 6\right] = 0\\ \left(x-3-\sqrt 6\right)\left(x-3+\sqrt 6\right) = 0[/tex]
Si un produit est nul, alors l'un au moins de ses facteurs est nul.
Donc :
[tex]x-3-\sqrt 6= 0\\ x = 3+\sqrt 6[/tex]
OU
[tex]x-3+\sqrt 6 = 0\\ x = 3-\sqrt 6[/tex]
[tex]S = \left\{3+\sqrt 6 ; 3-\sqrt 6\right\}[/tex]
Si tu as des questions, n'hésite pas à les ajouter en commentaire.
Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.