Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Explorez des milliers de questions et réponses fournies par une communauté d'experts prêts à vous aider à trouver des solutions. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète.

Le cône de révolution de sommet S a une hauteur [SO] de 9 cm et un rayon de base [OA] de 5 cm

1) Calculer le volume V1 de ce cône au cm carré (près par défaut)
2) Soit M le point du segment [SO] tel que SM=3cm
3) On coupe le cône par un plan parallèle a la base passant par M'
Calculer le rayon de cette section
4) Calculer le volume V2 du petit cône obtenu après la section (au cm carré près par défaut)


Sagot :

1. Volume du cône V1=1/3 * (pi * 5² * 9)=236 cm3
2.Rapport de réduction k =  SM/SO=3/9=1/3
Donc rayon de la section= 5 *1/3 = 5/3 = 1.7 cm au mm près.
Le volume V2 sera égal au volume V1 * (k au cube), soit 236 * (1/3) au cube=26 cm3 au cm3 près.

Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.