Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Trouvez des solutions rapides et fiables à vos interrogations grâce à une communauté d'experts dévoués. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

On pose A= 4x²-9+(2x+3)(x-2) 1) Développer et réduire l'expression A. 2) Factoriser 4x²-9. En déduire la factorisation de l'expression A. 3) a) Résoudre l'équation (2x+3)(3x-5)=0 b) Cette équation a-t-elle une solution entière ? c) Cette équation a-t-elle une solution décimale ?

Sagot :

1)   A  =  4x² - 9 + (2x + 3) (x - 2)
          =  4x² - 9 + 2x² - 4x + 3x - 6
          =  6x² - x - 15

 

 

2)   Comme :         4x² - 9  =  (2x)² - 3²  =  (2x + 3) (2x - 3)

 

     A  =  4x² - 9 + (2x + 3) (x - 2)

         =  (2x + 3) (2x - 3) + (2x + 3) (x - 2)
         =  (2x + 3) (2x - 3 + x - 2)
         =  (2x + 3) (3x - 5)

 

              [Vérification : (2x + 3) (3x - 5) = 6x² - 10x + 9x - 15 = 6x² - x - 15]

 

 

3)   a.   Comme un produit de facteurs est nul si l'un des facteurs est nul :

 

                                         (2x + 3) (3x - 5)  =  0

           Si :
           — 2x + 3  =  0    soit si    2x  =  -3    d'où si    x  =  -3/2
           — 3x - 5  =  0    soit si    3x  =  5    d'où si    x  =  5/3

 

      b.  Cette équation n'a donc pas de solution entière, puisque ni  -3/2  ni  5/3  n'est un nombre entier.

 

      c.  Cette équation a donc une solution décimale puisque  -3/2  =  -1,5  qui est un nombre décimal.

Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.