Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts.

On considère les entiers N pouvant s'écrire N=n^2 avec n nier est un carré parfait) 

a) démontrer que si N est pair alors n est pair. 

b) démontrer que si N est impair alors n est impair 



Sagot :

Il faut démontrer la contraposée: si n est impair alors N est impaire.
si n est impair il peut s'écrire n=2p+1 donc n^2= 4p^2+1+4p= 2(2p^2+2p) +1
On a donc un nombre pair (multiple de 2) auquel on ajoute 1. Ca donne donc un nombre impair.
Donc la proposition si N est pair alors n est pair est vraie.
même chose pour le b) en posant n=2q
Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.