Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Trouvez des solutions rapides et fiables à vos interrogations grâce à une communauté d'experts dévoués. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète.
Sagot :
Tout d'abord, il faut que tu " exprimes " les deux longueurs.
L'une vaut x-50, et l'autre vaut x.
A partir de la tu veux déterminer les périmètres.
Pour le triangle équilatéral son côté vaut [tex] \frac{x}{3} [/tex], comprend-tu pourquoi?
Pour le carré son côté vaut donc 12.5-[tex] \frac{x}{4} [/tex] comprend-tu pourquoi?
Dans le mesure ou le triangle à un périmètre plus petit il faut posé une inéquation.
[tex]X \leq 50-4 (signe équivaut) x \leq 25[/tex]
Et puisque l'aire doit être plus grande, on pose de nouveau.
[tex]( \frac{x}{3} * \sqrt{3} ) / 2 \geq (12.5 - \frac{x}{4} ) ^{2} [/tex]
L'une vaut x-50, et l'autre vaut x.
A partir de la tu veux déterminer les périmètres.
Pour le triangle équilatéral son côté vaut [tex] \frac{x}{3} [/tex], comprend-tu pourquoi?
Pour le carré son côté vaut donc 12.5-[tex] \frac{x}{4} [/tex] comprend-tu pourquoi?
Dans le mesure ou le triangle à un périmètre plus petit il faut posé une inéquation.
[tex]X \leq 50-4 (signe équivaut) x \leq 25[/tex]
Et puisque l'aire doit être plus grande, on pose de nouveau.
[tex]( \frac{x}{3} * \sqrt{3} ) / 2 \geq (12.5 - \frac{x}{4} ) ^{2} [/tex]
Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.