Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.

Bonjour, je suis en terminale ES,  j'ai besoin d'aide pour un dm de maths sur les suites qui est juste un horrible casse tête et j'espere que quelqu'un va pouvoir me venir en aide :D
J'ai réussis a faire la première partie du moins je crois mais la seconde me parait complexe(partie b: démonstration)




Bonjour Je Suis En Terminale ES Jai Besoin Daide Pour Un Dm De Maths Sur Les Suites Qui Est Juste Un Horrible Casse Tête Et Jespere Que Quelquun Va Pouvoir Me V class=
Bonjour Je Suis En Terminale ES Jai Besoin Daide Pour Un Dm De Maths Sur Les Suites Qui Est Juste Un Horrible Casse Tête Et Jespere Que Quelquun Va Pouvoir Me V class=

Sagot :

1a)B(n) = A(n) - 4
B(1) = A(1) - 4 = 1 - 4 = -3 cm²

1b)B(n+1) = A(n+1) - 4
B(n+1) = 1 + ¾.A(n) - 4
B(n+1) = ¾.A(n) - 3
B(n+1) = ¾[B(n) + 4] - 3
B(n+1) = ¾.B(n) + 3 - 3
B(n+1) = ¾.B(n) + 3 - 3
B(n+1) = ¾.B(n)

1c)Pour tout n de IN*, on a B(n+1) = ¾.B(n)
Donc la suite B(n) est géométrique.

1d)B(2) = ¾.B(1)
B(3) = ¾.B(2) = (¾)².B(1)
B(4) = ¾.B(3) = (¾)².B(2) = (¾)³.B(1)

Donc B(n+1) = (¾)ⁿ.B(1) = -3×(¾)ⁿ

2)B(n+1) = A(n+1) - 4
A(n+1) = B(n+1) + 4
A(n+1) = 4 - 3×(¾)ⁿ

Donc Lim(n→+∞) A(n) = 4
L'interprétation est donc qu'à l'infini, l'ensemble de la surface du carré initial de 4 cm² sera coloriée.
Nous apprécions votre temps. Revenez quand vous voulez pour les informations les plus récentes et des réponses à vos questions. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.