Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.
Sagot :
2° Montrer que les droites (BH) et (CD) sont
parallèles ainsi que les droites (BD) et (CH).
Dans le triangle ABC le point H est l'orthocentre
donc (BH) est la hauteur issue de B donc (BH) (AC)
C est sur le cercle de diamètre [AD] donc ADC est
rectangle en C donc (CD) (AC)
donc (BH) // (CD)
3° a) Quelle est la nature du quadrilatère BHCD ? Justifier la réponse. De même (CH) // (BD) car (CH) est hauteur du triangle ABC donc (CH)(AB) et B est sur le cercle de diamètre [AD] donc (BD)(AB) Le quadrilatère BHCD a ses cotés deux à deux parallèles c'est donc un parallélogramme.
b) En déduire que [BC] et [HD] ont le même milieu. BHCD est un parallélogramme donc ses diagonales, [BC] et [HD], se coupent en leur milieu
4° Soit H' le symétrique de H par rapport à (BC).
a) Montrer que la droite (BC) est parallèle à (H'D). [BC] et [HD], se coupent en leur milieu donc la droite (BC) passe par le milieu de [DH] H et H' sont symétriques par rapport à (BC) donc (BC) passe par le milieu de [HH'] Dans le triangle La droite (BC) passe par les milieux de côtés [HH'] et [DH] elle est donc parallèle au troisième côté donc (H'D) // (BC)
b) En déduire que le point H' appartient au cercle C H et H' sont symétriques par rapport à (BC) donc (HH') (BC) donc (H'D) (HH') donc (H'D) (AH') donc H' est sur le cercle de diamètre [AD]
3° a) Quelle est la nature du quadrilatère BHCD ? Justifier la réponse. De même (CH) // (BD) car (CH) est hauteur du triangle ABC donc (CH)(AB) et B est sur le cercle de diamètre [AD] donc (BD)(AB) Le quadrilatère BHCD a ses cotés deux à deux parallèles c'est donc un parallélogramme.
b) En déduire que [BC] et [HD] ont le même milieu. BHCD est un parallélogramme donc ses diagonales, [BC] et [HD], se coupent en leur milieu
4° Soit H' le symétrique de H par rapport à (BC).
a) Montrer que la droite (BC) est parallèle à (H'D). [BC] et [HD], se coupent en leur milieu donc la droite (BC) passe par le milieu de [DH] H et H' sont symétriques par rapport à (BC) donc (BC) passe par le milieu de [HH'] Dans le triangle La droite (BC) passe par les milieux de côtés [HH'] et [DH] elle est donc parallèle au troisième côté donc (H'D) // (BC)
b) En déduire que le point H' appartient au cercle C H et H' sont symétriques par rapport à (BC) donc (HH') (BC) donc (H'D) (HH') donc (H'D) (AH') donc H' est sur le cercle de diamètre [AD]
Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.