Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.
Sagot :
1)Faisons par récurrence.Supposons que la propriété soit jusqu'au rang n.
On a Un>=n et de plus, par construction, Un>=1 pour tout n (ça se montre facilement par récurrence) donc U(n-1)>=1.
On en déduit: U(n+1) = U(n-1)+Un >= n+1. Donc la propriété est vraie au rang n+1
La propriété est vraie en n=0 et n=1, donc par récurrence, elle est vraie pour tout n.
Comme la suite Vn=n tend vers +infini, on en déduit que puisque Un>=Vn, Un tend aussi vers +infini en +infini.
On a Un>=n et de plus, par construction, Un>=1 pour tout n (ça se montre facilement par récurrence) donc U(n-1)>=1.
On en déduit: U(n+1) = U(n-1)+Un >= n+1. Donc la propriété est vraie au rang n+1
La propriété est vraie en n=0 et n=1, donc par récurrence, elle est vraie pour tout n.
Comme la suite Vn=n tend vers +infini, on en déduit que puisque Un>=Vn, Un tend aussi vers +infini en +infini.
Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Laurentvidal.fr est là pour vos questions. N'oubliez pas de revenir pour obtenir de nouvelles réponses.