Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dévouée d'experts sur notre plateforme de questions-réponses. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.
Sagot :
1)Faisons par récurrence.Supposons que la propriété soit jusqu'au rang n.
On a Un>=n et de plus, par construction, Un>=1 pour tout n (ça se montre facilement par récurrence) donc U(n-1)>=1.
On en déduit: U(n+1) = U(n-1)+Un >= n+1. Donc la propriété est vraie au rang n+1
La propriété est vraie en n=0 et n=1, donc par récurrence, elle est vraie pour tout n.
Comme la suite Vn=n tend vers +infini, on en déduit que puisque Un>=Vn, Un tend aussi vers +infini en +infini.
On a Un>=n et de plus, par construction, Un>=1 pour tout n (ça se montre facilement par récurrence) donc U(n-1)>=1.
On en déduit: U(n+1) = U(n-1)+Un >= n+1. Donc la propriété est vraie au rang n+1
La propriété est vraie en n=0 et n=1, donc par récurrence, elle est vraie pour tout n.
Comme la suite Vn=n tend vers +infini, on en déduit que puisque Un>=Vn, Un tend aussi vers +infini en +infini.
Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.