Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise.

Bonjour, j'ai un Dm a rendre jeudi et je bloque sur un exercice. Voici l'énoncé:
Soit f la fonction définie sur R+, par f(x)=x/1+x
1. Montrer que pour tout x appartenant à R+ f(x)=1-(1/x+1)
2. En déduire les variations de f sur R+


Sagot :

1)
f(x)=[tex] \frac{x}{1+x} = \frac{x+1-1}{1+x}= \frac{x+1}{1+x} - \frac{1}{1+x} =1- \frac{1}{1+x} [/tex]
2) la fonction 1/(x+1) est décroissante sur R+ et tend vers 0 en l'infini, donc f est croissante sur R+ et tend vers 1 en +infini.
Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.