Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines.

Dans une feuille de carton carrée de 20 cm de côté on enlève aux quatre coins un carré de x côté. On plie les bords ainsi obtenus pour créer une boïte sans couvercle.

a) établir le volume V de cette boîte en fonction de x

b) étudier les variations de la fonction V définie sur [0;10] par l'expression trouvée

c) déterminer la valeur de x pour laquelle le volume de cette boîte est maximal



Sagot :

V= (20-2x)^2 * x = 4x^3-80x^2+400x
Tracer la courbe sur l'intervalle [0,10]  elle a la forme d'une sinusoide, elle part de l'
origine et passe par un maximum proche de 600  cm cube pour x entre 3 et 4 

déterminer la valeur de x pour laquelle le volume de cette boîte est maximal ?
Il faut calculer la valeur qui annule la dérivée
Dérivée = 12x^2-160x+400  = 3x^2-40x+100
Delta = 1600 - 1200 = 400    Racine de delta = 20
x= (40-20) / 6 =10/3

Pour x = 10/3 le volume est maximum

Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.