Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

C'est plus possible de bloquer sur cette exercice jusqu'à cette heure ci.. Si une bonne âme pouvez m'aider je lui en serais très reconnaissante..

Voici l'énoncé :
Une population de bactéries placée dans un milieu favorable a son développement augmente de 60% toutes les heures. Au début de l'expérience, il y a 5000 bactéries. On note Uo = 5 et pour tout n>=0 Un le nombre de bactéries au bout de n heures, exprimé en milliers.

1. Justifier que la suite (Un) est géométrique et préciser sa raison.
2. Donner l'expression de Un en fonction de n.
3. Justifier le sens de variation de ( Un).
4. Écrire un algorithme permettant de déterminer la durée a partir de laquelle le nombre de bactéries dépasse les 700 milliers.
5. Programmer cet algorithme a la calculatrice et interpréter le résultat affiché.


Sagot :

u(0)=5
u(n+1)=u(n)+0,6*u(n)
         =1,6u(n)
donc u est une suite géométrique de raison q=1,6
u(n)=5*1,6^n
1,6>1 donc u est croissante

algorithme :
variables
n entier
u réel
début
affecter à n la valeur 0
affecter à u la valeur 5
tant que u<700 000 faire
affecter à u la valeur 1,6*u
affecter à n la valeur n+1
fin tant que
afficher la valeur de n
afficher la valeur de u
Nous espérons que ces informations ont été utiles. Revenez quand vous voulez pour obtenir plus de réponses à vos questions. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.