Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés dans divers domaines sur notre plateforme. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses.

Bonjour, voici l'exercie :

Montrer que, quel que soit l'entier naturel n non nul, la somme des n premiers entiers naturels est egale a :  n(n+1)/2 

 

Je viens de voir les deux etapes initialisation et hérédité mais la je ne vois pas comment faire car dans l'etape initialisation il faut calculer ac n=0 sauf que la c'est non nul donc je ne comprend pas ... 



Sagot :

Montrer que, quel que soit l'entier naturel n non nul, la somme des n premiers entiers naturels est egale a :  n(n+1)/2

réponse :
S=1+2+3+...+n
S=n+(n-1)+(n-2)+...+1
par somme :
2S=(n+1)+(n+1)+(n+1)+...+(n+1)  [ n fois ]
donc 2S=n(n+1)
donc S=n(n+1)/2

Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à vos questions. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.