Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines.

Démontrer par récurrence que, pour tout entier naturel n, n(n²+5) est un multiple de 3.

Sagot :

P(n) : "n(n²+5) multiple de 3"
(i) : n=1 ; n(n²+5)=6=2x3 donc P(1) vraie
(h) : P(n) vraie
      n(n²+5) =3k avec k entier
      n³+5n=3k
      (n+1)((n+1)²+5)=(n+1)(n²+2n+6)
                            =n³+2n²+6n+n²+2n+6
                            =n³+3n²+8n+6
                            =(n³+5n)+(3n²+3n+6)
                            =3k+3(n²+n+2)
                            =3(n²+n+2+k)
                            =3k'
donc P(n+1) vraie
(c) : P(n) est vraie pour tout entier n


Nous espérons que ces informations ont été utiles. Revenez quand vous voulez pour obtenir plus de réponses à vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.