Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Rejoignez notre plateforme de questions-réponses et connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés.

soit f une fonction dérivable sur R vérifiant les relations suivantes
f'(x)= f(x) pour tout x appartenant à R
f(0) = 1
on  note Cf sa courbe représentative et l'on va essayer de tracer une courbe qui s'en approche. on ne connait pas les valeurs de f(x) donc on ne peut pas tracer les points de la courbe Cf mais on sait qu'en chaque point de la courbe,la pente de la tangente est égale à l'ordonnée du point
on prend un pas de 1
donner les coordonnées du seul point A0 connu de la courbe.préciser le coefficient directeur de Cf en A0
tracer la tangente sur [0:1] on obtient un segment [A0A1] qui approche la courbe Cf sur [0;1]
quelle est l ordonnée de A1?on la prend pour valeur aprochée de f(1)
on réitère le procédé sur l'intervalle [1;2] determiner les coordonnées de A2.Quelle est la valeur approchée de A2
.......
merci


Sagot :

Il s'agit simplement de la Méthode d'EULER
la fonction f s'appelle la fonction exponentielle de base e
avec e=2,718281828...

il faut utiliser un fichier GEOGEBRA afin de programmer cette fonction EXP
voici le programme :
A=(0,1)
f(x)=e^x
n=12
Séquence[(i / n, (1 + 1 / n)^i), i, 1, n]
Séquence[(-1 i / n, (1 - 1 / n)^i), i, 1, n]
Séquence[Segment[(i / n, (1 + 1 / n)^i), ((i - 1) / n, (1 + 1 / n)^(i - 1))], i, 1, n]
Séquence[Segment[(-1 i / n, (1 - 1 / n)^i), (-1 (i - 1) / n, (1 - 1 / n)^(i - 1))], i, 1, n]

je te joins le graphique du résultat obtenu