Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Découvrez des réponses complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète.
Sagot :
a) Il faut reconnaître l'identité remarquable a²-b²
x²-9+4(x+3)=0
(x+3)(x-3)+4(x+3)=0
On factorise par x+3
(x+3)(x-3+4)=0
(x+3)(x+1)=0
x=-3 ou x=-1
b) Toujours du a²-b²
5 (x² - 1) = 3 (x - 1) (x + 2)
5(x²-1)-3(x-1)(x+2)=0
5(x+1)(x-1)-3(x-1)(x+2)=0
On factorise par (x-1)
(x-1)(5(x+1)-3(x+2))=0
(x-1)(5x+5-3x-6)=0
(x-1)(2x-1)=0
x=1 ou x=1/2
c)Ici les solutions vont être complexe et il faut utiliser l'identité remarquable a²+b²=(a+ib)(a-ib)
(7 - 2x)² + 1 = 0
(7-2x+i)(7-2x-i)=0
[tex]x= \frac{7+I}{2} [/tex]
[tex]x= \frac{7-I}{2} [/tex]
d)
9 - (3x - 1)² = 0
(3x-1)²=9
On utilise la racine carré dans les deux membres
3x-1=3
ou
3x-1=-3
Donc
x=4/3
ou
x=-2/3
e) Il faut reconnaître l'identité remarquable (ax-b)² avec a=1 et b=13
x² - 26x + 169 = 0
(x-13)²=0
x=13
x²-9+4(x+3)=0
(x+3)(x-3)+4(x+3)=0
On factorise par x+3
(x+3)(x-3+4)=0
(x+3)(x+1)=0
x=-3 ou x=-1
b) Toujours du a²-b²
5 (x² - 1) = 3 (x - 1) (x + 2)
5(x²-1)-3(x-1)(x+2)=0
5(x+1)(x-1)-3(x-1)(x+2)=0
On factorise par (x-1)
(x-1)(5(x+1)-3(x+2))=0
(x-1)(5x+5-3x-6)=0
(x-1)(2x-1)=0
x=1 ou x=1/2
c)Ici les solutions vont être complexe et il faut utiliser l'identité remarquable a²+b²=(a+ib)(a-ib)
(7 - 2x)² + 1 = 0
(7-2x+i)(7-2x-i)=0
[tex]x= \frac{7+I}{2} [/tex]
[tex]x= \frac{7-I}{2} [/tex]
d)
9 - (3x - 1)² = 0
(3x-1)²=9
On utilise la racine carré dans les deux membres
3x-1=3
ou
3x-1=-3
Donc
x=4/3
ou
x=-2/3
e) Il faut reconnaître l'identité remarquable (ax-b)² avec a=1 et b=13
x² - 26x + 169 = 0
(x-13)²=0
x=13
Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.