Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.
Sagot :
Bonsoir,
Calcul de I
On applique les règles de priorité. On calcule d'abord ce qui est entre parenthèses, en calculant dans l'ordre le produit et la somme :
[tex]I = -4-3\left(-1+2\times 4^2\right)\\ I = -4-3\left(-1+2\times 16\right)\\ I = -4-3\left(-1+32\right)\\ I = -4-3\times 31[/tex]
Maintenant que la parenthèse est calculée, on applique les mêmes règles : d'abord le produit puis la différence.
[tex]I = -4-3\times 31\\ I = -4-93\\ I = -97[/tex]
Calcul de O
On applique les mêmes règles de priorité : d'abord les parenthèses, puis les multiplications et les divisions, puis les additions et les soustractions.
[tex]O = 4\times \sqrt{8^2-6^2}-4\left(-1-1\right)\\ O = 4\times \sqrt{64-36}-4\times \left(-2\right)\\ O = 4\sqrt{28}-\left(-8\right)\\ O = 4\sqrt{4\times 7}+8\\ O = 4\sqrt{4}\times \sqrt 7 +8\\ O = 8\sqrt 7+8\\ O = 8+8\sqrt 7[/tex]
Calcul du S
Tu sais que [tex]10^5 = 10\times 10\times 10\times 10\times 10 = 100000[/tex]
Multiplier par 10 puissance 5 revient à multiplier par un nombre formé d'un 1 suivi de 5 zéros, donc à décaler la virgule de 5 rangs vers la droite.
On calcule donc :
[tex]-7{,}85\times 10^5 = -785000[/tex]
On sait que multiplier par 10 puissance -3 revient à diviser par 10 puissance 3 (1000), donc à déplacer la virgule de 3 rangs vers la gauche.
On pose donc :
[tex]0{,}5\times 10^{-3} = 0{,}005[/tex]
Calcul de S.
On sait que :
[tex](ab)^n = a^n\times b^n[/tex]
Et que :
[tex]a^m \times a^n = a^{m+n}[/tex]
On applique :
[tex]S = x\left(3x\right)^4 \\ S= x\left(3\times x\right)^4\\ S = x\times 3^4\times x^4\\ S = 3^4\times x^5\\ S = 81x^5[/tex]
(donc a = 81).
Si tu as des questions, n'hésite pas à les ajouter en commentaire sur cette réponse.
Calcul de I
On applique les règles de priorité. On calcule d'abord ce qui est entre parenthèses, en calculant dans l'ordre le produit et la somme :
[tex]I = -4-3\left(-1+2\times 4^2\right)\\ I = -4-3\left(-1+2\times 16\right)\\ I = -4-3\left(-1+32\right)\\ I = -4-3\times 31[/tex]
Maintenant que la parenthèse est calculée, on applique les mêmes règles : d'abord le produit puis la différence.
[tex]I = -4-3\times 31\\ I = -4-93\\ I = -97[/tex]
Calcul de O
On applique les mêmes règles de priorité : d'abord les parenthèses, puis les multiplications et les divisions, puis les additions et les soustractions.
[tex]O = 4\times \sqrt{8^2-6^2}-4\left(-1-1\right)\\ O = 4\times \sqrt{64-36}-4\times \left(-2\right)\\ O = 4\sqrt{28}-\left(-8\right)\\ O = 4\sqrt{4\times 7}+8\\ O = 4\sqrt{4}\times \sqrt 7 +8\\ O = 8\sqrt 7+8\\ O = 8+8\sqrt 7[/tex]
Calcul du S
Tu sais que [tex]10^5 = 10\times 10\times 10\times 10\times 10 = 100000[/tex]
Multiplier par 10 puissance 5 revient à multiplier par un nombre formé d'un 1 suivi de 5 zéros, donc à décaler la virgule de 5 rangs vers la droite.
On calcule donc :
[tex]-7{,}85\times 10^5 = -785000[/tex]
On sait que multiplier par 10 puissance -3 revient à diviser par 10 puissance 3 (1000), donc à déplacer la virgule de 3 rangs vers la gauche.
On pose donc :
[tex]0{,}5\times 10^{-3} = 0{,}005[/tex]
Calcul de S.
On sait que :
[tex](ab)^n = a^n\times b^n[/tex]
Et que :
[tex]a^m \times a^n = a^{m+n}[/tex]
On applique :
[tex]S = x\left(3x\right)^4 \\ S= x\left(3\times x\right)^4\\ S = x\times 3^4\times x^4\\ S = 3^4\times x^5\\ S = 81x^5[/tex]
(donc a = 81).
Si tu as des questions, n'hésite pas à les ajouter en commentaire sur cette réponse.
Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.