asus
Answered

Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise.

 J'ai toujours des problèmes avec les calculs de ce genre sur des condition d'existence (domaine de définition de la fonction),comme celui là :                                                                                                    f(x) =         x^{3} - 4               
                                              8x^{3} + 10x^{2} -13x - 15


Sagot :

Cetb
La fonction est un quotient de polynôme. On sait qu'un polynôme est défini sur R.
Les endroits ou la fonction n'est pas définie sont les racines du dénominateur, il nous faut donc résoudre l'équation.
[tex]8x^{3}+10 x^{2}-13x-15=0 [/tex]
On cherche une racine évidente dans ce cas -1 est solution de l'équation 
On peut donc factoriser l'équation comme ceci [tex](x+1)(a x^{2} +bx+c)[/tex]
Reste à déterminer les coefficient a, b et c. pour cela on développe l'expression
[tex]a x^{3}+b x^{2} +cx+a x^{2} +bx+c [/tex]
En identifiant avec le dénominateur on obtient
a=8
b+a=10
c+b=-13
c=-15
On trouve aisément que b=2
Il ne nous reste plus qu'a résoudre [tex]8 x^{2} +2x-15=0[/tex]
Le discriminant vaut 4+15*8*4=484
Les solutions sont donc [tex] x_{1}= \frac{-2-22}{16} =- \frac{3}{2} [/tex]
et [tex] x_{2} = \frac{-2+22}{16}= \frac{5}{4} [/tex]

Le domaine d’existence de la fonction est donc [tex]R/(- \frac{3}{2},-1, \frac{5}{4} )[/tex]
En espérant t'avoir aidé
Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à vos questions. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.