Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Découvrez une mine de connaissances d'experts dans différentes disciplines sur notre plateforme de questions-réponses complète. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.
Sagot :
La fonction est un quotient de polynôme. On sait qu'un polynôme est défini sur R.
Les endroits ou la fonction n'est pas définie sont les racines du dénominateur, il nous faut donc résoudre l'équation.
[tex]8x^{3}+10 x^{2}-13x-15=0 [/tex]
On cherche une racine évidente dans ce cas -1 est solution de l'équation
On peut donc factoriser l'équation comme ceci [tex](x+1)(a x^{2} +bx+c)[/tex]
Reste à déterminer les coefficient a, b et c. pour cela on développe l'expression
[tex]a x^{3}+b x^{2} +cx+a x^{2} +bx+c [/tex]
En identifiant avec le dénominateur on obtient
a=8
b+a=10
c+b=-13
c=-15
On trouve aisément que b=2
Il ne nous reste plus qu'a résoudre [tex]8 x^{2} +2x-15=0[/tex]
Le discriminant vaut 4+15*8*4=484
Les solutions sont donc [tex] x_{1}= \frac{-2-22}{16} =- \frac{3}{2} [/tex]
et [tex] x_{2} = \frac{-2+22}{16}= \frac{5}{4} [/tex]
Le domaine d’existence de la fonction est donc [tex]R/(- \frac{3}{2},-1, \frac{5}{4} )[/tex]
En espérant t'avoir aidé
Les endroits ou la fonction n'est pas définie sont les racines du dénominateur, il nous faut donc résoudre l'équation.
[tex]8x^{3}+10 x^{2}-13x-15=0 [/tex]
On cherche une racine évidente dans ce cas -1 est solution de l'équation
On peut donc factoriser l'équation comme ceci [tex](x+1)(a x^{2} +bx+c)[/tex]
Reste à déterminer les coefficient a, b et c. pour cela on développe l'expression
[tex]a x^{3}+b x^{2} +cx+a x^{2} +bx+c [/tex]
En identifiant avec le dénominateur on obtient
a=8
b+a=10
c+b=-13
c=-15
On trouve aisément que b=2
Il ne nous reste plus qu'a résoudre [tex]8 x^{2} +2x-15=0[/tex]
Le discriminant vaut 4+15*8*4=484
Les solutions sont donc [tex] x_{1}= \frac{-2-22}{16} =- \frac{3}{2} [/tex]
et [tex] x_{2} = \frac{-2+22}{16}= \frac{5}{4} [/tex]
Le domaine d’existence de la fonction est donc [tex]R/(- \frac{3}{2},-1, \frac{5}{4} )[/tex]
En espérant t'avoir aidé
Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.