Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines.
Sagot :
1)Pour quelle valeur de m l'équation (E) est du premier degré? La résoudre alors.
(m-2)x²+2(m+1)x+m-14=0.
l'équation est de degré 1 si m-2=0 donc m=2
alors 6x-12=0
donc x=2
2)Résoudre dans tous les autres cas en discutant selon la valeur de m ,l’équation (E).
(m-2)x²+2(m+1)x+m-14=0.
on suppose que m-2 est non nul
delta=4(m+1)²-4(m-2)(m-14)
=36(2m-3)
ainsi :
- si m=3/2 alors il y a 1 solution x=-5
- si m<3/2 alors il n'y a pas de solution réelle
- si m>3/2 alors il y a 2 solutions distinctes
x=(-m-3*racine(2m-3)-1)/(m-2)
ou
x=(-m+3*racine(2m-3)-1)/(m-2)
3) Rédiger une conclusion reprenant tous les cas.
les solutions entières sont :
- si m=2 alors x=2
- si m=6 alors x=-4
- si m=26 alors x=-2
- si m=14 alors x=0
- dans les autres cas :
x=(-m-3*racine(2m-3)-1)/(m-2)
ou
x=(-m+3*racine(2m-3)-1)/(m-2)
(m-2)x²+2(m+1)x+m-14=0.
l'équation est de degré 1 si m-2=0 donc m=2
alors 6x-12=0
donc x=2
2)Résoudre dans tous les autres cas en discutant selon la valeur de m ,l’équation (E).
(m-2)x²+2(m+1)x+m-14=0.
on suppose que m-2 est non nul
delta=4(m+1)²-4(m-2)(m-14)
=36(2m-3)
ainsi :
- si m=3/2 alors il y a 1 solution x=-5
- si m<3/2 alors il n'y a pas de solution réelle
- si m>3/2 alors il y a 2 solutions distinctes
x=(-m-3*racine(2m-3)-1)/(m-2)
ou
x=(-m+3*racine(2m-3)-1)/(m-2)
3) Rédiger une conclusion reprenant tous les cas.
les solutions entières sont :
- si m=2 alors x=2
- si m=6 alors x=-4
- si m=26 alors x=-2
- si m=14 alors x=0
- dans les autres cas :
x=(-m-3*racine(2m-3)-1)/(m-2)
ou
x=(-m+3*racine(2m-3)-1)/(m-2)
Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.