Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Explorez notre plateforme de questions-réponses pour trouver des solutions fiables grâce à une large gamme d'experts dans divers domaines. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.
Sagot :
N.B. : sauf indication contraire, AB désigne le vecteur AB (et non la longueur)
1) Si l'on a A(1 ; 2) et B(5 ; −1),
les coordonnées du vecteur AB sont (xB − xA ; yB − yA)
d'où (5 − 1 ; −1 − 2)
soit AB(4 ; −3)
Si l'on a C(−4 ; 7) et D(4 ; 1),
les coordonnées du vecteur CD sont (xD − xC ; yD − yC)
d'où (4 + 4 ; 1 − 7)
soit CD(8 ; −6)
Or comme xAB ⋅ yCD = 4 × −6 = −24
et que yAB ⋅ xCD = −3 × 8 = −24
les deux vecteurs AB et CD sont collinéaires.
2) Comme les vecteurs AB et CD sont collinéaires, les droites AB et CD sont parallèles.
3) Si l'on a A(1 ; 2) et E(13 ; −7),
les coordonnées du vecteur AE sont (xE − xA ; yE − yA)
d'où (13 − 1 ; −7 − 2)
soit AE(12 ; −9)
4) Comme xAB ⋅ yAE = 4 × −9 = −36
et que yAB ⋅ xAE = −3 × 12 = −36
les deux vecteurs AB et AE sont collinéaires.
le point A étant commun a ces deux vecteurs collinéaires, A, B et E sont alignés.
5) Si l'on a AE(12 ; −9) et CD(8 ; −6)
comme xAE/xCD = 12/8 = 3/2
et que yAE/yCD = −9/−6 = 3/2
on a donc AE = 3/2 CD
Les deux vecteurs AE et CD sont collinéaires
les droites (AE) et (CD) sont donc parallèles.
Comme de plus k ≠ 1 la longueur des deux vecteurs est différente
et les droites (AC) et (ED) ne sont donc pas parallèles.
Le quadrilatère AEDC ayant deux côtés parallèles est donc un trapèze.
Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Laurentvidal.fr est là pour vos questions. N'oubliez pas de revenir pour obtenir de nouvelles réponses.