Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Notre plateforme de questions-réponses offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dédiée d'experts sur notre plateforme de questions-réponses.

prouver que toutes fonctions de R vers R peut s'ecrire comme somme d'une fonction paire et d'une fonction impaire



Sagot :

soit f une fonction quelconque définie sur IR

posons :

u(x)=(f(x)+f(-x))/2

et

v(x))=(f(x)-f(-x))/2

 

alors

f(x)=u(x)+v(x)

donc f est la somme de u et v

 

u(-x)=(f(-x)+f(-(-x)))/2=(f(-x)+f(x))/2=u-(x)

donc u est paire sur IR

 

v(-x)=(f(-x)-f(-(-x)))/2=(f(-x)-f(x))/2=-v(x)

donc v est impaire sur IR

 

donc toutes fonctions de R vers R peut s'ecrire comme somme d'une fonction paire et d'une fonction impaire

 

Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.