Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

prouver que toutes fonctions de R vers R peut s'ecrire comme somme d'une fonction paire et d'une fonction impaire



Sagot :

soit f une fonction quelconque définie sur IR

posons :

u(x)=(f(x)+f(-x))/2

et

v(x))=(f(x)-f(-x))/2

 

alors

f(x)=u(x)+v(x)

donc f est la somme de u et v

 

u(-x)=(f(-x)+f(-(-x)))/2=(f(-x)+f(x))/2=u-(x)

donc u est paire sur IR

 

v(-x)=(f(-x)-f(-(-x)))/2=(f(-x)-f(x))/2=-v(x)

donc v est impaire sur IR

 

donc toutes fonctions de R vers R peut s'ecrire comme somme d'une fonction paire et d'une fonction impaire

 

Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à vos questions. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.