Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Découvrez une mine de connaissances d'experts dans différentes disciplines sur notre plateforme de questions-réponses complète. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

On considère une feuille rectangulaire de périmètre donné p et de longueur x. 1- on prend: p= 4 a) exprimes l'aire de la feuille en fonction de x b) pour quelle valeur de x, cette aire est elle maximale? Merci d'avance

Sagot :

   Avec x la longueur de la feuille

       et  y la largeur de la feuille

 

   On a :           p  =  2x + 2y

 

        soit :        p − 2x  = 2y

     

        d'où :       y  =  p/2 − 2x

 

   Et    A  =  xy

              =  x(p/2 − 2x)

 

 

1)   a)   Si p  =  4, alors            y  =  2 − 2x

    

                        donc               A  =  x(2 − 2x)

                                                  =  2x − 2x²

 

     b)   Comme le sommet d'une parabole    ax² + bx + c    est atteint en   x  =  −b/2a

 

           et que si a est négatif, comme ici, la parabole est croissante pour   x  <  −b/2a

                                                                            e t décroissante pour  x  >  −b/2a

 

          L'aire sera maximale pour    x  =  −b/2a

                                                       =  2/2(2)

                                                       =  1/2

 

         soit pour   x  =  0,5 cm

 

         avec une valeur de  [ 2(0,5) − 2(0,5)² ] cm²  =  (1 − 0,5) cm²

                                                                         =  0,5 cm²

 

         Comme on peut le vérifier sur le graphique dans le fichier joint.

View image mhaquila
Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.