Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.

1) Quelle est/quelles sont la(les) racine(s) de l'équation x² - x + 1 (avec moyen utilisé comme Delta ou autre)

 

2) (x² - x + 1)² = ? (avec développement bien sur)

 

Merci d'avance pour votre aide



Sagot :

1)   L'équation    x² - x + 1    a pour discriminant :    

 

                    Δ  =  b² - 4ac  =  (-1)² - 4(1)(1)  =  1 - 4  =  -3

 

     Comme son discriminant est négatif, cette équation n'admet pas de racine réelle.

 

 

     [Cela est d'ailleurs confirmé par la courbe (bleue) de cette équation que l'on peut trouver en pièce jointe.]

 

 

 

2)   (x² - x + 1)²  =  (x² - x + 1) (x² - x + 1)

                        =  x² (x² - x + 1)  -  x (x² - x + 1)  +  1 (x² - x + 1)

                        =   (x⁴ - x³ + x²)  -   (x³ - x² + x)   +   (x² - x + 1)

                        =  x⁴ - 2x³ + 3x² - 2x + 1

 

 

      [Confirmation par les courbes verte et rouge sur le fichier joint]

 

 

 

      L'équation   (x² - x + 1)²   est le carré de l'équation précédente.

 

      Or un carré est toujours positif ou nul.

 

      Cette équation est donc toujours positive ou nulle.

 

      Or le seul carré nul est le carré d'un nombre nul.

 

      Cette équation est donc nulle pour les même valeurs que l'équation précédente.

 

      Or l'équation précédente est toujours strictement positive.

 

      Cette équation est donc strictement positive et n'admet donc également aucune racine.

 

 

     [Cela est d'ailleurs confirmé par la courbe (rouge) de cette équation que l'on peut trouver en pièce jointe.]

View image mhaquila
Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.